mechanism, with good proximity of the organic and inorganic catalytic centers, seems clear. It is a process with considerable synthetic potential beyond the examples reported here.

Acknowledgment. Support of this work by the NSF is gratefully acknowledged.

Preparation, Characterization, and Structure of Fe₄(CO)₁₂[Au(PPh₃)]₂BH: An Iron–Gold Borido Cluster Violating the H/AuPR₃ Structural Analogy

Catherine E. Housecroft*

Department of Chemistry, University of New Hampshire Durham, New Hampshire 03824

Arnold L, Rheingold*

Department of Chemistry, University of Delaware Newark, Delaware 19716 Received June 9, 1986

Metallaboranes are predominantly exemplified by boron-rich rather than metal-rich clusters, and in a variety of cases, replacement of BH₂ for isoelectronic CH units in a metallaborane leads to a known organometallic cluster.¹ However, in contrast to metallaboranes, metal-carbon clusters also include a category of compound in which a carbon atom is fully or partially encapsulated by metal atoms: the so-called metal carbide clusters.^{2,3}

The replacement of metal cluster⁴⁻⁷ and, to a far lesser extent, borane cluster⁸ hydrogen atoms by gold(I) phosphine^{4,5,9} has been exploited to synthesize some novel compounds with structures often related to the parent hydrogen-containing species via direct H/ AuL $(L = PR_3)$ substitution. Indeed, it has been noted that the structures of transition-metal-gold clusters can be used directly to model the analogous transition-metal hydrides^{4,10} and to "isolate" isomers which are unstable as the hydride cluster but stable after H/AuL replacement.⁴ To our knowledge, no H/AuL replacement has been reported for a metallaborane. Here we report the synthesis of $Fe_4(CO)_{12}[Au(PPh_3)]_2BH$ (I).

I was prepared by the addition of $[HFe_4(CO)_{12}BH]PPN^{11}$ (II) (PPN = bis(triphenylphosphine)iminium) (0.04 mmol) in 4 mLof CH₂Cl₂ to an excess of Au(PPh₃)Cl. After 30 min of stirring at room temperature, solvent was removed and the product extracted from PPNCl and unreacted Au(PPh₃)Cl with diethyl ether. The major product¹² was a green-brown, moderately air sensitive, neutral material collected as the first band after elution with hexanes/ CH_2Cl_2 (1:2) on a silica gel column. A single crystal suitable for X-ray diffraction was grown from CH₂Cl₂ layered with hexane.13

(1) Housecroft, C. E.; Fehlner, T. P. Adv. Organomet. Chem. 1982, 21, 57

- (2) Muetterties, E. L. Prog. Inorg. Chem. 1981, 28, 203.

(3) Bradley, J. S. Adv. Organomet. Chem. 1983, 22, 1.
(4) Lauher, J. W.; Wald, K. J. Am. Chem. Soc. 1981, 103, 7648.
(5) Bateman, L. W.; Green, M.; Mead, K. A.; Mills, R. M.; Slater, I. D.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Dalton Trans. 1983, 2599.
(6) Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237 and for the network conduction.

references therein. (7) Horwitz, C. P.; Holt, E. M.; Brock, C. P.; Shriver, D. F. J. Am. Chem.

Soc. 1985, 107, 8136 and references therein.
(8) Wynd, A. J.; Robins, S. E.; Welch, D. A.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1985, 819. Beckett, M. A.; Crook, J. E.; Greenwood, N.

Chem. Commun. 1985, 819. Beckett, M. A.; Crook, J. E.; Greenwood, N. N.; Kennedy, J. D. J. Chem. Soc., Dalton Trans. 1984, 1427. (9) Evans, D. G.; Mingos, D. M. P. J. Organomet. Chem. 1982, 232, 171. (10) Hall, M. B.; Halpin, C. F. J. Am. Chem. Soc. 1986, 108, 1695. (11) Housecroft, C. E.; Fehlner, T. P. Organometallics 1986, 5, 379. (12) $Fe_4(CO)_{12}[Au(PPh_3)]_2BH: 28.7-MHz^{-11}B NMR ((CD_3)_2CO, 20 °C)$ $\delta + 141.3$ (br s, fwhm = 185 Hz, $|^{1}H|$ fwhm = 110 Hz, $J_{BH} \simeq 90$ Hz); $36.2-MHz^{-31}P NMR ((CD_3)_2CO, -70 °C) \delta + 53.0; 89.56-MHz^{-1}H NMR$ $((CD_3)_2CO, 20 °C) \delta + 7.57-7.25 (m, 30 H, Ph), -9.1 (br, 1 H, FeHB); IR$ $<math>(CH_2Cl_2, cm^{-1})_{PC0} 2056 m, 2009 vs, 1996 vs, 1967 m, 1925 sh.$

 $(CH_2Cl_2, cm^{-1}) \nu_{CO} 2056 \text{ m}, 2009 \text{ vs}, 1996 \text{ vs}, 1967 \text{ m}, 1925 \text{ sh}.$

Au(1)-Au(2)	2.943 (1)	Fe(4)-C(12)	2.42 (1)
Au(1)-Fe(1)	2.630(1)	Au(1)-B	2.36 (1)
Au(1)-Fe(2)	2.852 (2)	Au(2)-B	2.35 (1)
Au(2)-Fe(2)	2.606 (1)	Fe(1)-B	2.07 (1)
Fe(1)-Fe(2)	2.720 (2)	Fe(2)-B	2.00 (1)
Fe(1)-Fe(3)	2.671 (2)	Fe(3)-B	2.01 (1)
Fe(1)-Fe(4)	2.578 (2)	Fe(4)-B	2.13 (1)
Fe(2)-Fe(4)	2,708 (2)	Au(1) - P(1)	2.299 (3)
Fe(3) - Fe(4)	2.655 (3)	Au(2) - P(2)	2.302 (2)
Fe(1) - C(12)	1.75 (1)		、
Angles			
Au(1)-Au(2)-B	51.4 (3)	Au(2)-B-Fe(4)	125.5 (6)
Au(1)-Au(2)-Fe(2)	61.5 (0)	Fe(1)-Fe(2)-Fe(4)	56.7 (1)
Au(2)-Au(1)-B	51.2 (3)	Fe(1)-Fe(2)-B	49.1 (3)
Au(2)-Au(1)-Fe(1)	98.0 (0)	Fe(1)-Fe(3)-Fe(4)	57.9 (1)
Au(2)-Au(1)-Fe(2)	53.4 (0)	Fe(1)-Fe(3)-B	50.1 (3)
Au(1)-Fe(1)-B	58.8 (3)	Fe(1)-Fe(4)-Fe(2)	61.9 (1)
Au(2)-Fe(2)-B	59.7 (3)	Fe(1) - Fe(4) - Fe(3)	61.3 (1)
Au(2)-B-Fe(1)	144.4 (5)	Fe(1)-Fe(4)-B	51.1 (3)
Au(2)-B-Fe(2)	73.0 (4)	Fe(1)-B-Fe(2)	83.8 (4)
Au(2)-B-Fe(3)	126.6 (5)		
Au(1)-Fe(1)-Fe(2)	64.4 (0)	Fe(1)-B-Fe(3)	81.8 (5)
Au(1)-Fe(1)-Fe(3)	84.4 (1)	Fe(1)-B-Fe(4)	75.7 (4)
Au(1)-Fe(1)-Fe(4)	110.8 (1)	Fe(2)-Fe(1)-Fe(3)	94.0 (1)
Au(1)-Fe(2)-B	54.8 (3)	Fe(2)-Fe(1)-Fe(4)	61.4 (1)
Au(1)-Fe(2)-Fe(1)	56.3 (0)	Fe(2)-Fe(1)-B	47.0 (4)
Au(1)-Fe(2)-Fe(4)	100.8 (1)	Fe(2)-Fe(4)-Fe(1)	61.9 (1)
Au(1)-B-Au(2)	77.3 (3)	Fe(2)-Fe(4)-Fe(3)	97.7 (1)
Au(1)-B-Fe(1)	72.5 (4)	Fe(2)-B-Fe(3)	158.9 (6)
Au(1)-B-Fe(2)	81.3 (4)	Fe(2)-B-Fe(4)	81.8 (5)
Au(1)-B-Fe(3)	108.8 (6)	Fe(3)-Fe(1)-Fe(4)	60.7 (1)
Au(1)-B-Fe(4)	145.3 (5)	Fe(3)-Fe(1)-B	48.2 (3)
Au(2)-Fe(2)-Au(1)	65.1 (0)	Fe(3)-Fe(4)-B	48.2 (4)
Au(2)-Fe(2)-Fe(1)	104.4 (1)	Fe(4)-Fe(3)-B	52.1 (3)
Au(2)-Fe(2)-Fe(4)	97.2 (1)		

Table I. Selected Distances (Å) and Angles (deg) from I

Distances

The X-ray crystal structure of I (Figure 1) shows the near encapsulation of the boron by six metal atoms. Selected bond parameters are given in Table I. The "butterfly" of iron atoms present in II¹¹ and in its conjugate acid, III,¹⁴ is retained in I. The boron resides 0.37 (1) Å above the Fe(2)---Fe(3) wingtip axis.¹⁵

(13) Crystal data for I: $C_{48}H_{31}Au_2BFe_4P_2O_{12}$, $M_r = 1489.8$, triclinic, PI, a = 10.870 (3) Å, b = 12.114 (3) Å, c = 20.466 (6) Å, $\alpha = 80.23$ (2)°, $\beta = 83.17$ (2)°, $\gamma = 73.40$ (2)°, V = 2537.9 Å³, Z = 2, $D_c = 1.949$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 70.2$ cm⁻¹, green-black, 0.24 × 0.30 × 0.37 mm, 293 K. Nicolet R3m/ μ diffractometer with graphite monochromator. Corrections for decay (linear, 4%) and absorption (empirical, $T_{max}/T_{min} = 2.23$). Of 8320 reflections collected (max $2\theta = 48^{\circ}$), 7942 were unique $R_{ni} = 1.2\%$), and 5474 were considered observed with $F_{\circ} \ge 3\sigma(F_{\circ})$. Phenyl rings; rigid, planar constraint. All non-hydrogen atoms anisotropic; hydrogen atoms idealized; isotropic contributions (H atom on boron ignored). Refinement of 550 parameters: $R_F = 4.49\%$, $R_{wF} = 5.20\%$, GOF = 1.102, $\Delta/\sigma = 0.08$, $\Delta\rho = 1.13$ e Å⁻³ (1.28 Å from Au(2)). All programs in SHELXTL and P3 program libraries (Nicolet Corp., Madison, WI). (14) Fehlner, T. P.; Housecroft, C. E.; Scheidt, W. R.; Wong, K. S. Or-

ganometallics 1983. 2. 825. (15) In III, the boron lies 0.31 Å above the wingtip Fe-Fe axis.

0002-7863/86/1508-6420\$01.50/0 © 1986 American Chemical Society

Figure 1. Molecular structure and labeling scheme for I. Phenyl rings depicted as ipso-carbon atoms only.

One AuL (L = PPh₃) unit, Au(1), caps the Fe(1)Fe(2)B face and the second AuL unit caps the Fe(2)Au(1)B face. The hydrogen atom on boron was not located, but its ¹H NMR shift (-9.1 ppm) and observed coupling to boron implies an Fe-H-B bridge position. The cluster skeleton can be regarded as a pair of facially fused trigonal bipyramids if all metal atoms plus the boron are regarded as vertex atoms, although structural parameters (viz., position of B with respect to the iron butterfly and the latter's dihedral angle of 113.4 (1)°) suggest that a more appropriate description is an arachno cluster as previously presented for III.14,16,17

Although I is prepared from anion II, it is formally derived from III by replacing two H atoms by AuL fragments. However, in contrast to many previous examples of H/AuL replacement,4-7 this turns out not to be a straightforward structural analogy. Taking the H/AuL isolobal analogy at face value, the increased degree of boron encapsulation in going from III to I is brought about by the migration of one "proton" (in the form of Au(PPh₃)) from the base of the iron skeleton toward the boron. A similar situation arises in comparing $HFe_4(CO)_{12}CH^{18}$ (IV) with $Fe_4(CO)_{12}(AuL)_2C$ (L = PEt₃, PPh₃)¹⁹ (V). Again, although the preparative route to V is not via direct H/AuL substitution in IV, the net result is a "proton" migration toward the main-group element and away from the metal framework. In V, however, the carbide is sited within a near octahedron of metal atoms. Whether or not the structural difference between I and V is due entirely to the requirements of the additional proton in I is currently under investigation.

It is noteworthy that, compared to III, one of the hinge Fe(CO) units in I is twisted through 60° and forms a semibridging CO along the Fe(1)-Fe(4) hinge bond, the site occupied by a bridging hydride in II and III. The steric requirements of the Fe(1)Fe(2)B face bridging Au(PPh₃) group presumably cause the hinge Fe-(CO)₃ rearrangement. It is interesting, however, that in a closely related butterfly cluster, $[Fe_4(CO)_{13}(AuL)]^-$ (L = PPh₃, PEt₃), the AuL fragment occupies the hinge position,²⁰ just as the hydrogen atom did in the analogous $[HFe_4(CO)_{13}]^{-21}$

The positions of the Au(PPh₃) groups in the solid-state structure of I are inequivalent (Figure 1). However, at -70 °C, the ³¹P NMR spectrum exhibits only one resonance. Assuming an intramolecular process, this equivalence can be explained by either a simple site exchange or a "rocking" motion of the [Au(PPh₃)]₂ unit across the Fe(2)-B bond. A related dynamic skeletal rearrangement involving the [Pt(PMe₂Ph)₂] unit in PtOs₃(CO)₉- $(PMe_2Ph)_2(\mu_3-S)_2$ has been invoked by Adams et al.²²

Finally, whereas the ¹¹B NMR shift is very sensitive to the presence of B-H or Fe-H-B vs. direct Fe-B bonds,^{11,23} it does not appear sensitive to association of the boron with AuPR₃ moieties. Thus in going from II to I no prominent change in ¹¹B NMR shift is observed, even though the boron is increasing its degree of metal encapsulation.

Acknowledgment. This research was supported by a grant from Research Corporation which is gratefully acknowledged. NSF provided support for the purchase of the University of Delaware diffractometer.

Supplementary Material Available: Tables of atomic coordinates, bond distances and angles, anisotropic temperature factors, and hydrogen atom coordinates for I (7 pages); table of observed and calculated structure factors for I (33 pages). Ordering information is given on any current masthead page.

Enzyme-Catalyzed Regioselective Deacylation of Protected Sugars in Carbohydrate Synthesis

Henri M. Sweers and Chi-Huey Wong*[†]

Department of Chemistry, Texas A&M University College Station, Texas 77843 Received May 1, 1986

Selective deprotection of acylated sugars and nucleosides or nucleotides has been a problem and an area of extensive research.¹ The preparation of protected sugars with free primary hydroxyl group, for example, is very often carried out through several steps including selective tritylation, esterification, and acid-catalyzed detritylation (which may cause complicated acyl migration) followed by tedious chromatographic purifications.^{2,3}

As part of our interest in the application of enzymes in organic synthesis, particularly in carbohydrate synthesis,⁴ we wish to report here the regioselective deacylation of methyl 2,3,4,6-tetra-Oacyl-D-hexopyranosides to give the 6-OH derivatives in high yields (80-90%) using the lipase from Candida cylindracea (Scheme I). Enzymatic approaches to this type of reactions were attempted but yielded a mixture of products.⁵

⁽¹⁶⁾ Previous Fenske-Hall calculations on III indicate that the BH₂ unit is strongly perturbed upon interaction with the metal butterfly, allowing each of the boron and hydrogens to bond directly to the cluster

⁽¹⁷⁾ Wong, K. S.; Scheidt, W. R.; Fehlner, T. P. J. Am. Chem. Soc. 1982, 104. 1111.

⁽¹⁸⁾ Beno, M. A.; Williams, J. M.; Tachikawa, M.; Muetterties, E. L. J. Am. Chem. Soc. 1981, 103, 1485.

⁽¹⁹⁾ Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby, P. R.; Rosales, M. J. J. Organomet. Chem. 1982, 231, C59.

⁽²⁰⁾ The cluster core structure is also cation-dependent and exhibits solution equilibrium between butterfly and tetrahedral forms?⁷ Horwitz, C. P.; Shriver, D. F. J. Am. Chem. Soc. **1985**, 107, 8147.

⁽²¹⁾ Manassero, M.; Sansoni, M.; Longoni, G. J. Chem. Soc., Chem. Commun. 1976, 919.

⁽²²⁾ Adams, R. D.; Wang, S. Inorg. Chem. 1985, 24, 4447. Adams, R. D.; Horvath, I. T.; Wang, S. Inorg. Chem. 1986, 25, 1617.
 (23) Vites, J. C.; Housecroft, C. E.; Eigenbrot, C.; Buhl, M. L.; Long, G.

J.; Fehlner, T. P. J. Am. Chem. Soc. 1986, 108, 3304.

[†]Searle Scholar (1985–1988), Presidental Young Investigator (1986–1991). (1) Paulsen, H. Angew. Chem., Int. Ed. Engl. **1982**, 21, 155–73. Nicolaou, K. È ; Dolle, R. E.; Papahatjis, D. P.; Randall, J. L. J. Am. Chem. Soc. 1984, 106, 4189-4192.

⁽²⁾ Sugihara, J. M. Adv. Carbohydr. Chem. 1953, 8, 1-44. Kovac, P.;

 ⁽²⁾ Suginar, S. M. Adv. Cobinyar. Chem. 1953, 6, 1944, 128, 101–109.
 (3) Falent-Kwast, E.; Kovac, P.; Bax, A.; Glaudemans, C. P. J. Carbohydr. Res. 1986, 332–340; Haines, A. H. Adv. Carbohydr. Chem. Biochem. 1981, 39, 13–70. Dasgupta, F.; Hay, G. W.; Szarek, W. A.; Shilling, W. L. Carbohydr. Res. 1983, 114, 153-157.

⁽⁴⁾ Durrwachter, J. R.; Sweers, H. M.; Nozaki, K.; Wong, C.-H. *Tetrahedron Lett.* 1986, 27, 1261–1264; Root, R. L.; Qurrwachter, J. R.; Wong, C.-H. J. Am. Chem. Soc. 1985, 107, 2297–2298. Whitesides, G. M.; Wong, C.-H. Angew. Chem., Int. Ed. Engl. 1985, 24, 617–638. Durrwachter, J. R.; Drueckhammer, D. G.; Nozaki, K.; Wong, C.-H., submitted for publication in L. Chen. Chem. Che in J. Am. Chem. Soc.

⁽⁵⁾ Sachder, H. S.; Starkovsky, N. A. Tetrahedron Lett. 1969, 733. Taunton-Rigby, A. J. Org. Chem. 1973, 38, 977. Fink, A. L.; Hay, G. W. Can. J. Biochem. 1969, 47, 353.